Characterization of Neuronal Populations in the Human Trigeminal Ganglion and Their Association with Latent Herpes Simplex Virus-1 Infection
نویسندگان
چکیده
Following primary infection Herpes simplex virus-1 (HSV-1) establishes lifelong latency in the neurons of human sensory ganglia. Upon reactivation HSV-1 can cause neurological diseases such as facial palsy, vestibular neuritis or encephalitis. Certain populations of sensory neurons have been shown to be more susceptible to latent infection in the animal model, but this has not been addressed in human tissue. In the present study, trigeminal ganglion (TG) neurons expressing six neuronal marker proteins were characterized, based on staining with antibodies against the GDNF family ligand receptor Ret, the high-affinity nerve growth factor receptor TrkA, neuronal nitric oxide synthase (nNOS), the antibody RT97 against 200 kDa neurofilament, calcitonin gene-related peptide and peripherin. The frequencies of marker-positive neurons and their average neuronal sizes were assessed, with TrkA-positive (61.82%) neurons being the most abundant, and Ret-positive (26.93%) the least prevalent. Neurons positive with the antibody RT97 (1253 µm(2)) were the largest, and those stained against peripherin (884 µm(2)) were the smallest. Dual immunofluorescence revealed at least a 4.5% overlap for every tested marker combination, with overlap for the combinations TrkA/Ret, TrkA/RT97 and Ret/nNOS lower, and the overlap between Ret/CGRP being higher than would be expected by chance. With respect to latent HSV-1 infection, latency associated transcripts (LAT) were detected using in situ hybridization (ISH) in neurons expressing each of the marker proteins. In contrast to the mouse model, co-localization with neuronal markers Ret or CGRP mirrored the magnitude of these neuron populations, whereas for the other four neuronal markers fewer marker-positive cells were also LAT-ISH+. Ret and CGRP are both known to label neurons related to pain signaling.
منابع مشابه
PCR detection of thymidine kinase gen of latent herpes simplex Virus type 1 in mice trigeminal ganglia
Herpes simplex virus type 1 establishes a latent infection in the peripheral nervous system following primary infection. During latent infection, virus genome exhibit limited transcription, with the HSV LATs consistently detected in latency infected ganaglia. Following ocular infection viral latency develops in the trigeminal ganglia. In this study PCR has been used for detection of HSV-1 nuc...
متن کاملLocalization of Herpes Simplex Virus Type 1 DNA in Latently Infected BALB/c Mice Neurons Using in situ Polymerase Chain Reaction
Background: Herpes simplex virus type-1 (HSV-1) establishes a lifelong latent infection in neurons following primary infection. The existence of latent HSV-1 DNA in the trigeminal ganglia of infected BALB/c mice was examined using a direct in situ PCR technique, based on Digoxigenin-11-dUTP detection system with anti-digoxigenin-peroxidase and 3,3'-diaminobenzidine (DAB) substrate. Methods: Eig...
متن کاملVirus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript.
Latent infections with periodic reactivation are a common outcome after acute infection with many viruses. The latency-associated transcript (LAT) gene is required for wild-type reactivation of herpes simplex virus (HSV). However, the underlying mechanisms remain unclear. In rabbit trigeminal ganglia, extensive apoptosis occurred with LAT(-) virus but not with LAT(+) viruses. In addition, a pla...
متن کاملThe Changing Epidemiology of Herpes Simplex Virus Type 1 Infection: The Associated Effects on the Incidence of Ocular Herpes
Herpes simplex virus type 1 (HSV-1) with a worldwide distribution has been reported in all human populations, resulting in a clinical spectrum of infections. Although HSV type 2 (HSV-2) is known as the most common cause of genital herpes, an increasing number of cases with genital herpes are caused by HSV-1. The present study aimed to discuss the changes in the epidemiology of HSV-1 infection i...
متن کاملA LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1.
Herpes simplex virus (HSV) persists in the human population by establishing long-term latent infections followed by periodic reactivation and transmission. Latent infection of sensory neurons is characterized by repression of viral productive-cycle gene expression, with abundant transcription limited to a single locus that encodes the latency-associated transcripts (LATs). We have observed that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013